
From Processor
Verification Upwards

Three Research Vignettes
in Memory of Mike Gordon

Speaker: Magnus Myreen

Oxford, July 2018

Covering years: 2005-2014

Meeting Mike for the first time 2005

Also met: Hasan Amjad, Anthony Fox, Juliano Iyoda

Mike: I suggest you start with

Later: try proving some crypto-like
code, e.g. bignum arithmetic

Tea at 4pm every day

Often there:

Mike Gordon, Larry
Paulsson, Anthony Fox,
Thomas Tuerk, Scott Owens,
Aaron Coble, Tjark Weber,
Peter Sewell, Joe Hurd, …

but also visitors:

Warren Hunt,
Anna Slobodova,
Kristin Yvonne Rozier, …

a pot of tea, a box full of biscuits and a tray of small change

ARM6 verification in HOL (Anthony Fox)

A
R

E
G

N

C
TR

L

4

CTRL

C
TR

L

IR
E

G C
TR

L

C
TR

L

C
TR

L

C
TR

L

S
C

TR
LR

E
G

SHCOUT

C
TR

L

S
H

C
O

U
T

P
S

R
FB

C
P

S
R

L

C
TR

L

Mux

Mux

Mux

Mux

Mux

Memory
Interface

R
B

A

P
C

W
A

R
A

A

R
W

A

P
S

R
A

P
S

R
W

A

Register
Bank

Program
Status

Registers
Bank

AREG

DIN

ALUB

ALUA

Field
Extractor

&
Field

Extender

Shifter
+

ALU

DATA

INC

RA A

PSRRD

ALU

ALUNZCV

PCBUS

PSRDAT

IMM/DIN’

RB

B

PIPE

SCTRLREG

PSRCPSR P
S

R
C

PSR

Figure 3: The arm6 Data Path.

16

2003: End of the first project.
The initial proof was complete
but it lacked some features.

0 1 2 3 4 5 6 7 8 9 10 11 12
a: sub D E

b: swp F D

c: add F D

b: swp F D E E E E

c: add F D E E

d: b F D E E E

e: mvn F

f: cmp F

a: sub F D

b: swp F

Figure 4: Pipeline flow for Example 1.

State \ Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

pipea,pipeaval b,T c,F b,T c,T d,T d,T d,T d,T e,T e,T f,T a,T b,T
pipeb,pipebval b,T c,F b,T c,T c,T c,T c,T d,T d,T e,T f,T a,T b,T
ireg,iregval a,T b,F c,F b,T b,T b,T b,T c,T c,T d,T d,T d,T a,T
ointstart F F F F F F F F F F F F F
onewinst T T T T F F F T F T F F T
opipebll T T T T F F F T F T T T T
nxtic data proc swp reg shift swp swp swp swp reg shift reg shift br br br data proc
nxtis t3 t3 t3 t3 t4 t5 t6 t3 t4 t3 t4 t5 t3

Table 8: The pipeline behaviour for Example 1.

22

Late 2005: End of ARM6
verification work. The final
version included features
that were omitted in the first
proof, e.g. multiplication,
block data transfers,
co-processor instructions
and all interrupts/exceptions.

Datapath:
(not control)

Pipeline illustration:

Can Anthony’s ARM model be used?

His tooling produced theorems that describe ARM,
e.g. ARM instruction add r0,r0,r0 is described by:

Hoare triple

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 is described by theorem:

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state =

0xE0800000w) ^ ¬state.undefined)
(NEXT ARM MMU cp state =

ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE REG 0w

(ARM READ REG 0w state + ARM READ REG 0w state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM MODEL

Informal syntax for this talk:

(aR 0w x * aPC p)

{R0 x ⇤ PC p }

{(p,0xE0800000w)}

p : E0800000

(aR 0w (x+x) * aPC (p+4w))

{R0 (x+x) ⇤ PC (p+4) }

encoding of
add r0,r0,r0

My attemptExample

An ARM program for calculating the factorial of a positive number:

MOV b, #1 ; b := 1

L: MUL b, a, b ; b := a ⇥ b

SUBS a, a, #1 ; a := a - 1

BNE L ; jump to L if a 6= 0

A classical Hoare-style specification:

{(a = x) ^ (x 6= 0)}
FACTORIAL

{(a = 0) ^ (b = x!)}

Side condition:
The registers associated with
a and b are distinct.

What is left unchanged?

Mike’s suggestion: try separation logic

Example

Specification for multiplication and decrement-by-one:

{R a x ⇤ R b y}
MUL b,a,b

+1{R a x ⇤ R b (x · y)}+1

{R a x ⇤ S }
SUB a,a,#1

+1{R a (x�1) ⇤ S (x�1=0)}+1

Extension:
{R a x ⇤ R b y ⇤ S }

MUL b,a,b
+1{R a x ⇤ R b (x · y) ⇤ S }+1

Composition:

{R a x ⇤ R b y ⇤ S }
MUL b,a,b; SUB a,a,#1

+2{R a (x�1) ⇤ R b (x · y) ⇤ S (x�1=0)}+2

Example

Specification for multiplication and decrement-by-one:

{R a x ⇤ R b y}
MUL b,a,b

+1{R a x ⇤ R b (x · y)}+1

{R a x ⇤ S }
SUB a,a,#1

+1{R a (x�1) ⇤ S (x�1=0)}+1

Extension:
{R a x ⇤ R b y ⇤ S }

MUL b,a,b
+1{R a x ⇤ R b (x · y) ⇤ S }+1

Composition:

{R a x ⇤ R b y ⇤ S }
MUL b,a,b; SUB a,a,#1

+2{R a (x�1) ⇤ R b (x · y) ⇤ S (x�1=0)}+2

Solution based on separation logic worked!

proved w.r.t. Anthony’s
ARM specification

proved w.r.t. Anthony’s
ARM specification

proved w.r.t. Anthony’s
ARM specification

Mike’s suggestion: try separation logic

Solution based on separation logic worked!
Machine code, Hoare triple definition

The Hoare triple’s definition

{p} c {q} = 8r s. (p ⇤ code c ⇤ r) (to set(s)))
9n. (q ⇤ code c ⇤ r) (to set(next

n(s)))

Covers functional correctness, termination, resource usage.

{R EAX a ⇤ EIP p ⇤ S }
p : 40
{R EAX (a+1) ⇤ EIP (p+1) ⇤ S }

Neat definitions:

My first paper during my PhD

Met Konrad Slind.

Konrad had an ESOP paper at
the same instance of ETAPS.

Hoare Logic for Realistically Modelled

Machine Code

Magnus O. Myreen, Michael J. C. Gordon

Computer Laboratory, University of Cambridge, Cambridge, UK

Abstract. This paper presents a mechanised Hoare-style programming
logic framework for assembly level programs. The framework has been
designed to fit on top of operational semantics of realistically modelled
machine code. Many ad hoc restrictions and features present in real
machine-code are handled, including finite memory, data and code in
the same memory space, the behavior of status registers and hazards
of corrupting special purpose registers (e.g. the program counter, proce-
dure return register and stack pointer). Despite accurately modeling such
low level details, the approach yields concise specifications for machine-
code programs without using common simplifying assumptions (like an
unbounded state space). The framework is based on a flexible state repre-
sentation in which functional and resource usage specifications are writ-
ten in a style inspired by separation logic. The presented work has been
formalised in higher-order logic, mechanised in the HOL4 system and is
currently being used to verify ARM machine-code implementations of
arithmetic and cryptographic operations.

1 Introduction

Computer programs execute on machines where stacks have limits, integers are
bounded and programs are stored in the same memory as data. However, ver-
ification of computer programs is almost without exception done using highly
simplified models, where stacks and memory are unbounded, integers are arbi-
trarily large and the compilers are trusted to keep code and data apart. Proving
properties of programs with respect to realistic models is generally avoided, since
many of the common simplifying assumptions made by high-level programming
logics tend to fit badly with realities of accurate low-level models. In this paper
we present a programming logic that has been designed to fit on top of accurate
models of machine languages.

We present a Hoare logic that has been carefully designed to accommodate
many of the ad hoc restrictions and features of machine code: finite memory, data
and code in the same memory space, the behaviour of status register, hazards
of corrupting special purpose registers and some details that arise from hard-
ware implementations. As an example of a restriction imposed by the underlying
hardware, consider the following two seemingly equivalent implementations of
the factorial program in ARM assembly. The example uses the ARM instruc-
tions "MOV b, #1" (set register b to 1), "MUL c, a, b" (put the product of

Mike didn’t want to be a
co-author (felt I had key

ideas and done the work)

TACAS’07

I insisted and Mike
eventually agreed to

be co-author.

Konrad visits Cambridge

I worked on verification of machine code.

Konrad had a PhD student working on proof-producing
compilation to ARM code.

Mike advised me to not do verified /
proof-producing compilation

… in order to too avoid competing
with Konrad’s PhD student.

I demoed my tools to Konrad, but he wanted more automation.

My response to Konrad’s request
Basic idea

Example: Given some hard-to-read (ARM) machine code,

0: E3A00000 mov r0, #0
4: E3510000 L: cmp r1, #0
8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]
16: 1AFFFFFB bne L

The decompiler produces a readable HOL4 function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

My response to Konrad’s request (cont.)Decompilation, correct?

Decompiler automatically proves a certificate, which states that
f describes the e↵ect of the ARM code:

fpre(r0, r1,m))

{ (R0, R1, M) is (r0, r1,m) ⇤ PC p ⇤ S }
p : E3A00000 E3510000 12800001 15911000 1AFFFFFB

{ (R0, R1, M) is f (r0, r1,m) ⇤ PC (p + 20) ⇤ S }

Read informally as:
if initially reg 0, reg 1 and memory described by (r0, r1,m), then
the code terminates with reg 0, reg 1 and memory as f (r0, r1,m)

My thesis work
Infrastructure in HOL4

During my PhD, I developed the following infrastructure:

decompiler

ARM x86 PowerPC

compilerfunc

code

(code,thm)

(func,thm)

machine-code Hoare triple

. . . each part will be explained in the next slides.

My work turns to Lisp

The final case study in my PhD thesis echos something of
Mike’s PhD thesis (which was about Lisp).

LISP case study

Idea: create LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compiler
HOL4 functions for

LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc.

ARM, x86, PowerPC code
and certificate theorems

machine-code Hoare triple

It was a lot of funLISP interpreter in use

Example: paper gives a definition of pascal-triangle, for which:

(pascal-triangle ’((1)) ’6)

returns:

((1 6 15 20 15 6 1)
(1 5 10 10 5 1)
(1 4 6 4 1)
(1 3 3 1)
(1 2 1)
(1 1)
(1))

Timings: ARM 0.090 ms, x86 0.001 ms, PowerPC 0.004 ms

LISP interpreter in use

To execute verified machine code, we:

1. wrote C wrapper around verified machine code,

2. compiled using gcc,

3. checked with hexdump that gcc didn’t alter the machine code,

4. ran code on real hardware:

Nintendo DS lite (ARM) MacBook (x86) old MacMini (PowerPC)

The verified code was run on several platforms:

EPSRC proposal

Mike and I wrote an EPSRC proposal. Mike claimed that I
wrote the proposal myself, but Mike edited significantly.

Proposal accepted!

4 years of freedom

Mike was very hands off by
now, but suggested I apply

ideas from my thesis

Single-author POPL paper on self-modifying code / JIT

Collaboration with seL4 team at NICTA

Joint work with Jared Davis on Milawa prover (Lisp)

a reflective ACL2-like prover with a
novel minimal trusted kernel

More about Mike’s influence

Mike arranged for me to visit
a Canadian crypto company
(accompanied by Peter Homeier)

Mike managed to get Xavier Leroy
to be the examiner of my PhD
thesis in 2008 (viva 2009).

(timely due to CompCert POPL’06)

Approach: create collaboration instead of competition

Mike’s other PhD students 2005-2014

Juliano Iyoda

Thomas Tuerk

Eric Koskinen

Alexey Gotsman

Ramana Kumar

Matko Botincan

James Reynolds

Mike’s last PhD student: Ramana Kumar

Started his PhD in the autumn of 2011.

Strong drive to do collaborative work that would
produce results that last.

Context:

Around this time, Scott Owens and I published an
ICFP paper on Proof-Producing Synthesis of ML from HOL

Also: Freek Wiedijk had asked me at ITP’11:
“Can you do for HOL Light what you did for Milawa?”

The CakeML project started.

Michael had recent work on verified parsing.

CakeML’s first major result

CakeML: A Verified Implementation of ML

Ramana Kumar ⇤ 1 Magnus O. Myreen † 1 Michael Norrish 2 Scott Owens 3

1 Computer Laboratory, University of Cambridge, UK

2 Canberra Research Lab, NICTA, Australia‡

3 School of Computing, University of Kent, UK

Abstract

We have developed and mechanically verified an ML system called

CakeML, which supports a substantial subset of Standard ML.

CakeML is implemented as an interactive read-eval-print loop

(REPL) in x86-64 machine code. Our correctness theorem ensures

that this REPL implementation prints only those results permitted

by the semantics of CakeML. Our verification effort touches on

a breadth of topics including lexing, parsing, type checking, in-

cremental and dynamic compilation, garbage collection, arbitrary-

precision arithmetic, and compiler bootstrapping.

Our contributions are twofold. The first is simply in build-

ing a system that is end-to-end verified, demonstrating that each

piece of such a verification effort can in practice be composed

with the others, and ensuring that none of the pieces rely on any

over-simplifying assumptions. The second is developing novel ap-

proaches to some of the more challenging aspects of the veri-

fication. In particular, our formally verified compiler can boot-

strap itself: we apply the verified compiler to itself to produce a

verified machine-code implementation of the compiler. Addition-

ally, our compiler proof handles diverging input programs with a

lightweight approach based on logical timeout exceptions. The en-

tire development was carried out in the HOL4 theorem prover.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification—Correctness proofs, Formal

methods; F.3.1 [Logics and meanings of programs]: Specifying

and Verifying and Reasoning about Programs—Mechanical veri-

fication, Specification techniques, Invariants

Keywords Compiler verification; compiler bootstrapping; ML;

machine code verification; read-eval-print loop; verified parsing;

verified type checking; verified garbage collection.

⇤ supported by the Gates Cambridge Trust

† supported by the Royal Society, UK

‡ NICTA is funded by the Australian Government through the Department

of Communications and the Australian Research Council through the ICT

Centre of Excellence Program.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

POPL ’14, January 22–24, 2014, San Diego, CA, USA..

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2544-8/14/01. . . $15.00.

http://dx.doi.org/10.1145/2535838.2535841

1. Introduction

The last decade has seen a strong interest in verified compilation;

and there have been significant, high-profile results, many based

on the CompCert compiler for C [1, 14, 16, 29]. This interest is

easy to justify: in the context of program verification, an unverified

compiler forms a large and complex part of the trusted computing

base. However, to our knowledge, none of the existing work on

verified compilers for general-purpose languages has addressed all

aspects of a compiler along two dimensions: one, the compilation

algorithm for converting a program from a source string to a list of

numbers representing machine code, and two, the execution of that

algorithm as implemented in machine code.

Our purpose in this paper is to explain how we have verified

a compiler along the full scope of both of these dimensions for a

practical, general-purpose programming language. Our language is

called CakeML, and it is a strongly typed, impure, strict functional

language based on Standard ML and OCaml. By verified, we mean

that the CakeML system is ultimately x86-64 machine code along-

side a mechanically checked theorem in higher-order logic saying

that running that machine code causes an input program to yield

output or diverge as specified by the semantics of CakeML.

We did not write the CakeML compiler and platform directly in

machine code. Instead we write it in higher-order logic and synthe-

sise CakeML from that using our previous technique [22], which

puts the compiler on equal footing with other CakeML programs.

We then apply the compiler to itself, i.e., we bootstrap it. This

avoids a tedious manual refinement proof relating the compilation

algorithm to its implementation, as well as providing a moderately

large example program. More specifically,

• we write, and can run, the compiler as a function in the logic,

and we synthesise a CakeML implementation of the compiler

inside the logic;

• we bootstrap the compiler to get a machine-code implementa-

tion inside the logic; and

• the compiler correctness theorem thereby applies to the

machine-code implementation of the compiler.

Another consequence of bootstrapping is that we can include the

compiler implementation as part of the runtime system to form an

interactive read-eval-print loop (REPL). A verified REPL enables

high-assurance applications that provide interactivity, an important

feature for interactive theorem provers in the LCF tradition, which

were the original motivation for ML.

Contributions
• Semantics that are carefully designed to be simultaneously suit-

able for proving meta-theoretic language properties and for sup-

porting a verified implementation. (Section 3)

• An extension of a proof-producing synthesis pathway [22] orig-

inally from logic to ML, now to machine code (via verified

compilation). (Sections 4–6, 10)

POPL’14

(Mike liked this result.)

… connection to the original paper on ML:

POPL’78

photo from 2015

photo from 2015

BCS Distinguished
Dissertation Award 2010

BCS Distinguished
Dissertation Award 1997

ACM SIGPLAN Doctoral
Dissertation Award 2017

Also: Joe Hurd was runner-up for BCS award

Also: Alexey Gotsman was runner-up for BCS award

PhD supervisor
for all of these

